skip to main content


Search for: All records

Creators/Authors contains: "Ding, Haichuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we introduce a network entity called point of connection (PoC), which is equipped with customized powerful communication, computing, and storage (CCS) capabilities, and design a data transportation network (DART) of interconnected PoCs to facilitate the provision of Internet of Things (IoT) services. By exploiting the powerful CCS capabilities of PoCs, DART brings both communication and computing services much closer to end devices so that resource-constrained IoT devices could have access to the desired communication and computing services. To achieve the design goals of DART, we further study spectrum-aware placement of edge computing services. We formulate the service placement as a stochastic mixed-integer optimization problem and propose an enhanced coarse-grained fixing procedure to facilitate efficient solution finding. Through extensive simulations, we demonstrate the effectiveness of the resulting spectrum-aware service placement strategies and the proposed solution approach. 
    more » « less
  2. The integration of sub-6 GHz and millimeter wave (mmWave) bands has a great potential to enable both reliable coverage and high data rate in future vehicular networks. Nevertheless, during mmWave vehicle-to-infrastructure (V2I) handovers, the coverage blindness of directional beams makes it a significant challenge to discover target mmWave remote radio units (mmW-RRUs) whose active beams may radiate somewhere that handover vehicles are not in. Besides, fast and soft handovers are also urgently needed in vehicular networks. Based on these observations, to solve the target discovery problem, we utilize channel state information (CSI) of sub-6 GHz bands and Kernel-based machine learning (ML) algorithms to predict vehicles’ positions and then use them to pre-activate target mmW-RRUs. Considering that the regular movement of vehicles on almost linearly paved roads with finite corner turns will generate some regularity in handovers, to accelerate handovers, we propose to use historical handover data and K-nearest neighbor (KNN) ML algorithms to predict handover decisions without involving time-consuming target selection and beam training processes. To achieve soft handovers, we propose to employ vehicle-to-vehicle (V2V) connections to forward data for V2I links. Theoretical and simulation results are provided to validate the feasibility of the proposed schemes. 
    more » « less